
LA-UR-17-31373
Approved for public release; distribution is unlimited.

Title: Evaluating Nuclear Data and their Uncertainties

Author(s): Talou, Patrick

Intended for: 4th International Workshop on Nuclear Data Covariances,
2017-10-02/2017-10-06 (Aix-en-Provence, France)

Issued: 2017-12-19



Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for
the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396.  By approving this
article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or to allow others to do so, for U.S. Government purposes.  Los Alamos National Laboratory requests that the
publisher identify this article as work performed under the auspices of the U.S. Department of Energy.  Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.



EPJ manuscript No.
(will be inserted by the editor)

Evaluating Nuclear Data and their Uncertainties

In Search of a New Paradigm

Patrick Taloua

Nuclear Physics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, USA

Received: date / Revised version: December 7, 2017

Abstract. In the last decade or so, estimating uncertainties associated with nuclear data has become an al-
most mandatory step in any new nuclear data evaluation. The mathematics needed to infer such estimates
look deceptively simple, masking the hidden complexities due to imprecise and contradictory experimental
data and natural limitations of simplified physics models. Through examples of evaluated covariance matri-
ces for the soon-to-be-released U.S. ENDF/B-VIII.0 library, e.g., cross sections, spectrum, multiplicity, this
paper discusses some uncertainty quantification methodologies in use today, their strengths, their pitfalls,
and alternative approaches that have proved to be highly successful in other fields. The important issue
of how to interpret and use the covariance matrices coming out of the evaluated nuclear data libraries is
discussed.

PACS. XX.XX.XX No PACS code given

1 The Current Paradigm

The last two decades have seen a significant rise in ef-
forts to quantify uncertainties associated with evaluated
nuclear data. Most general purpose libraries now contain a
relatively large number of covariance matrices associated
with various nuclear data types: reaction cross sections,
neutron and γ multiplicities, neutron and γ spectra, an-
gular distributions of secondary particles. The evaluation
process often follows a common procedure:

1. Collect and analyze experimental differential data on
specific reaction channels.

2. Perform model calculations to represent those data.
3. Apply a Bayesian or other statistical approach to tune

the model input parameters to fit the experimental
differential data.

4. Use the newly evaluated data in transport simulations
of integral benchmarks.

5. Cycle back to original evaluation to improve perfor-
mance of the library on those benchmarks.

6. Continue cycle until “satisfied”.

Differential data correspond to those that report exper-
imental values on physical quantities stored in data li-
braries, and which represent specific physical quantities
associated with a single reaction channel, e.g., (n, 2n) cross
sections (see Fig. 1).

On the other hand, integral data represent those that
can only be obtained by a more or less complex combina-
tion of differential quantities. Perhaps the most emblem-
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Fig. 1. The ENDF/B-VIII.0 evaluated 239Pu(n, 2n) cross sec-
tion and one-sigma uncertainty band are shown in comparison
with several experimental data sets.

atic integral data in our field is the neutron multiplication
factor keff of the Jezebel Pu fast critical assembly (see
Fig. 2). This factor does not represent a quantity intrinsic
to the isotope (239Pu) or to a particular reaction channel,
as opposed to differential data. Its modeling requires a
careful representation of the geometry of the experimental
setup and the use of more than one nuclear data set: aver-
age prompt fission neutron multiplicity ν, average prompt
fission neutron spectrum (PFNS), neutron-induced fission
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cross section σf of 239Pu are the most important data for
accurately simulating Jezebel keff . Such integral data are
incredibly useful to complement sparse differential data,
limited physics models, and are broadly used to validate
nuclear data libraries.

Fig. 2. The Jezebel 239Pu critical assembly.

Figure 3 shows several C/E calculated-over-experiment
ratios of basic benchmarks used to validate the latest U.S.
ENDF/B-VIII.0 library [1]. Most points cluster around
C/E=1.0, demonstrating that the simulations reproduce
the experimental values extremely well. The high perfor-
mance of the library to reproduce this particular suite of
benchmarks is no accident, but instead the result of vari-
ous little tweaks that have been applied to the underlying
evaluated nuclear data to reproduced those benchmarks
accurately. This fine-tuning of the library is a very con-
tentious point, which is discussed in this contribution.

Fig. 3. Basic benchmarks used in the validation of the
ENDF/B-VIII.0 library [1]. Overall the ENDF/B-VIII.0 li-
brary (in red) performs even better than the ENDF/B-VII.1
(in green) for this particular suite of integral benchmarks.

If the uncertainties are based solely on differential data,
the uncertainties associated with the evaluated nuclear

data and propagated through the transport simulations
produce very large uncertainties on the final simulated in-
tegral numbers. This is reasonable since our knowledge of
the integral benchmarks has not been folded in the evalu-
ation process. However, the expected distribution of C/E
values across many benchmarks should reflect these rela-
tively large errors. It is not the case, as shown in Fig. 3, for
the reason that the library was slightly tuned to reproduce
this limited set of benchmarks.

If, on the other hand, the uncertainties are based solely
on model calculations, the standard deviations tend to get
rather small with large correlated terms, i.e., strong off-
diagonal elements of the covariance matrix.

Another point of contention has been the lack of cross-
correlation between the low-energy, resolved and unre-
solved resonance range, and the higher fast energy range
evaluations, as seen for instance in Fig. 4 for the 239Pu(n, γ)
correlation matrix in ENDF/B-VIII.0. This is not a mis-
take but simply the reflection that two evaluation proce-
dures were used to produce this combined picture of the
uncertainties. Since the two energy ranges of the evalua-
tion were done independently, using distinct experimen-
tal information and model calculations, it is not unrea-
sonable to obtain null correlation terms between the two
blocks. However, better approaches being developed [2]
would create more realistic correlations between those en-
ergy ranges.

Fig. 4. The correlation matrix evaluated for 239Pu (n,γ) in
ENDF/B-VII.1 shows two uncorrelated blocks for two energy
regions, meeting at 2.5 keV, the upper limit of the unresolved
resonance range.

2 An Ideal Evaluation

The promise of an evaluated nuclear data library is to
report values of nuclear physical quantities as accurately
as possible, given the state of our knowledge at the time
the library is produced. With this in mind, all pertinent
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information and data related to the quantity of interest
should be used to infer its most accurate value and uncer-
tainty. So not only differential data, model calculations,
but any other relevant data, including integral data should
naturally enter into the evaluation process. The current
paradigm is a bit murkier, blending the line between dif-
ferential and integral data, and “calibrating” evaluated
data in order for the library to perform well when used in
benchmark calculations. It is important to note that this
calibration step is typically not included in the quantifi-
cation of uncertainties and correlations. A more rigorous
approach would definitely have to include this step explic-
itly.

In the following, I describe what could be considered
an “ideal” evaluation, including a realistic quantification
of experimental uncertainties and correlations, the inclu-
sion of all available information, the use of comprehensive
physics models, the respect of basic physics constraints,
and finally an estimation of unknown systematic biases.

2.1 Realistic Experimental Uncertainties and
Correlations

Most often, experimental differential data are conveniently
retrieved from the EXFOR database [3]. This is a powerful
tool for the evaluator who is trying to mine data related
to specific isotopes and reactions, often spanning a wide
range of years when the experiments were performed. Its
potential use is however limited. Besides being incomplete,
sometimes difficult to navigate because of the possibility
to store the same data in different categories, or simply
not flexible enough to accommodate complicated data sets
(e.g., multi-dimensional data sets), it also lacks an impor-
tant feature for use with modern data mining algorithms:
meta-data. Although the information is often present in
the original reports and published journal articles, it is
often missing in the terse summary provided in EXFOR,
or if present, can be buried in text that would be difficult
to interpret using simple algorithms.

Such information is crucial in trying to estimate cross-
experiment correlations. As an example, Fig. 5 shows the
correlation matrix obtained by Neudecker et al. [4] for the
235U thermal prompt fission neutron spectrum, covering
four distinct but correlated experimental data sets. Miss-
ing such type of correlations can lead to much smaller
final estimated uncertainties when using any least-square
or minimization technique. A recent example is the uncer-
tainty associated with the standard 252Cf (sf) ν previously
estimated at 0.13% [5] and now revised to 0.4% [6] simply
based on the inclusion of cross-experiment correlations.

In the case of integral data, DICE [7], Database for
the International Criticality Safety Benchmark Evaluation
Project (ICSBEP) Handbook [8] is a relational database
that goes a long way toward this goal of organizing com-
plex and multi-dimensional information. A rather exten-
sive set of queries can be performed, e.g., experimental fa-
cility, isotope, fuel-pin cell composition, and can be used
efficiently to investigate the importance of specific nuclear
data for particular applications. A similar approach should

Fig. 5. Correlation matrix across four (4) different experimen-
tal data sets for the thermal neutron-induced prompt fission
neutron spectrum of 235U. Correlations across different exper-
iments are clearly visible below about N=350 points. Figure
taken from Neudecker et al. [4].

be undertaken for storing and mining a database of exper-
imental differential data.

2.2 Use of All Information

A controversial question surrounding the current paradigm
is the somewhat arbitrary separation in the use of differ-
ential versus integral data in the nuclear data evaluation
process. By siding on the side of caution and not including
(properly) integral data into this process, the evaluation
of uncertainties becomes inconsistent and somewhat diffi-
cult to defend and interpret. It is important to understand
that the current evaluated covariances do not reflect our
complete knowledge on the underlying data. For instance,
the experimental uncertainty on the keff of Jezebel esti-
mated to be about 0.2%. When uncertainties stemming
from nuclear data (neutron-induced cross sections, PFNS,
ν, angular distributions of secondary particles) are propa-
gated in the transport simulation of Jezebel, the calculated
uncertainty [1] on keff is greater than 1%. Although the
mean value of Jezebel is used as a “calibration” point for
the library, this information is not reflected or used in the
evaluation of the data covariance matrices. When looking
more broadly at a suite of benchmarks, the C/E values
cluster around 1.0 with a distribution much narrower than
would be obtained if the nuclear data covariance matrices
were sampled (see Fig. 3 for instance).

“Good” reasons abound for why this separation of in-
tegral vs. differential data exist in the first place, and why
we face this somewhat inconsistent situation. One of those
reasons is that integral data cannot provide a unique set of
nuclear data that represent the measured data. To again
consider the example of Jezebel, many combinations of
PFNS, ν and σf of 239Pu would be consistent with the
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measured data, leading to correlations [9] not taken into
account in current evaluations. Smaller effects, such as im-
purities of 240Pu, would also impact the result. Besides nu-
clear data, uncertainties in the geometry, mass, impurities
could be underestimated leading to a misstated overall un-
certainty on keff . Also, and most importantly, the creation
of an adjusted library would tend to tune nuclear data in
the wrong place, away from what differential information
indicates.

How does this situation differ from differential experi-
mental measurements? Not very much, in fact. The nature
of the data extracted is indeed different, as it is a com-
bination of more “elemental” differential data. However,
differential measurements suffer from similar limitations
and sources of uncertainties, which to be precisely taken
into account, should be simulated using modern trans-
port codes. The Chi-Nu experimental team at LANSCE,
aiming at measuring the PFNS of 239Pu and 235U with
great accuracy, devoted significant efforts to the accurate
modeling of the detector setup [10]. In doing so, they also
studied past experiments and demonstrated that multi-
ple scattering corrections were largely underestimated in
the low-energy tail of the spectrum. Only detailed MCNP
simulations could provide a more accurate picture of the
experiment and its associated uncertainties.

Quasi-differential or semi-integral experiments provide
another example blurring the line between differential and
integral experiments. Measuring the total double-differential
neutron inelastic scattering [11] or the spectrum-average
cross sections of threshold reactions [12] produce data that
cannot be directly compared to theoretically-predicted phys-
ical quantities. They do however offer valuable constraints
on imprecise evaluated data, and are being used to vali-
date and often correct data evaluations.

2.3 Comprehensive Physics Models

A model, no matter how elaborate, is always an imperfect
representation of reality. However, the more elaborate and
predictive the model is, the better it is at predicting phys-
ical quantities away from its calibration points, and as
a consequence, uncertainties obtained from variations of
the model parameters are much more likely to be reason-
able. It is therefore very important to keep improving the
physics models to lead realistic uncertainty estimates.

To continue with the example of the PFNS, a com-
mon approach to evaluating it uses a Maxwellian or Watt
function, with only one or two parameters to tune to avail-
able experimental data. A more realistic representation
uses the Madland-Nix model [13], which accounts in an
effective and average way for the decay of some or all
excited fission fragments. This model has been used ex-
tensively in most evaluated nuclear data libraries thanks
to its simplicity, its limited number of parameters, and to
its relatively good representation of the observed actinide
PFNS. This model remains crude though in dealing with
the complexity of the fission process, the many fission frag-
ment configurations produced in a typical fission reaction,

the nuclear structure of each fragment, and the competi-
tion between prompt neutrons and γ rays. The relatively
small number of model input parameters leads naturally
to very rigid and highly-correlated PFNS covariance ma-
trices if obtained by simple variation of those parameters
around their best central values.

A more realistic but also more complex model has been
developed in recent years, using the statistical Hauser-
Feshbach theory to describe the de-excitation of each fis-
sion fragment through successive emissions of prompt neu-
trons and γ rays. It was implemented in the CGMF code [14],
for instance, using the Monte Carlo technique to study
complex correlations between the emitted particles. While
the Madland-Nix model can only predict an average PFNS,
CGMF can account for all characteristics of the prompt
neutrons and γ rays in relation to the characteristics of
their parent fragment nuclei, on an event-by-event basis.
While the Madland-Nix model could use input parameters
with limited resemblance with physical quantities, param-
eters entering in the more detailed approach are often di-
rectly constrained by experimental data different than just
the PFNS. For instance, the average total kinetic energy
〈TKE〉 of the fission fragments plays a key role in deter-
mining accurately the average prompt neutron multiplic-
ity ν. In the ENDF/B-VII evaluation, a constant 〈TKE〉
was used as a function of incident neutron energy, contrary
to experimental evidence [15]. Because the Madland-Nix
model was not used directly to estimate ν, and because
the influence of 〈TKE〉 on PFNS is a second-order cor-
rection only, this problem was somehow solved by using
artificially high effective level density parameter to esti-
mate the temperature of the fragments.
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Fig. 6. Angular distribution of the prompt fission neutrons vs.
the light fragment direction in the thermal neutron-induced fis-
sion of 235U, for the pre-neutron emission light fragment mass
AL=96, as calculated using the CGMF Monte Carlo Hauser-
Feshbach code [14] and compared to experimental data by
Göök et al. [16].

On the contrary, in CGMF, the correct incident neutron
energy dependence of 〈TKE〉 is used and is important to
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correctly account for the measured PFNS, the neutron
multiplicity, as well as many other correlated prompt fis-
sion data, e.g., γ-ray characteristics. Another example is
given in Fig. 6 where the angular distribution of prompt
fission neutrons with respect to the direction of the light
fragments is plotted for the thermal neutron-induced fis-
sion reaction of 235U, for a given light fragment mass,
AL=96. The experimental data are by Göök et al. [16] and
the calculated points were obtained using the CGMF code.
The correct representation of this mass-dependent angular
distribution can only be obtained if the proper excitation
energy, kinetic energy, and nuclear structure of the frag-
ments are relatively well reproduced in the calculations.
For instance, placing too much energy in the heavy frag-
ment compared to the light fragment would have tilted
this distribution toward large angles. An anisotropy pa-
rameter, which aims at accounting for the anisotropic emis-
sion of the prompt neutrons in the center-of-mass of the
fragments due to their angular momentum, is often used
in modern Madland-Nix model calculations [17] to bet-
ter account for the low-energy tail of the PFNS. However,
no angular distribution of the prompt neutrons can be in-
ferred from such calculations and therefore this parameter
is only constrained by the agreement between the calcu-
lated and experimental PFNS. CGMF-type calculations can
better address this type of questions by calculating con-
sistently the angular distributions of the prompt neutrons
as well as their energy spectrum.

2.4 Basic Physics Constraints

As explained in the previous section, models are imperfect
and therefore uncertainty estimates based solely on the
variation of their input parameters cannot capture devi-
ations from the model assumptions, therefore leading to
underestimated evaluated uncertainties. In some extreme
cases, where experimental data exist only very far from the
phase space of interest, one is forced to rely on imposing
basic physics constraints to avoid non-physical extensions
of the models. Examples abound: a PFNS or a cross sec-
tion cannot be negative; fission yields remain normalized
to 2.0, energy balance is conserved, etc. This topic is dis-
cussed at length in Ref. [18]. An interesting application of
those principles is in astrophysics, and in particular on the
impact that nuclear mass model uncertainties have on the
production rate of the elements in the universe through
the r-process and fission recycling [19].

2.5 Unknown Unknowns

What about those now infamous “unknown unknowns”?
It is too often evident that such unrecognized and miss-
ing biases and uncertainties exist in reported experimental
data, whenever different data sets are discrepant beyond
their reported uncertainties. While it is sometimes pos-
sible to uncover a missing normalization factor or a ne-
glected source of error, it also often happens that one is
left with discrepant data even after careful consideration

of sources of uncertainty. Gaussian processes [20] could be
used to some extent to account for systematic discrepan-
cies between model calculations and experimental data,
possibly revealing model defects. Of course, the very no-
tion of “model defects” relies on accurate experimental
data trends.

3 Putting It All Together

As mentioned earlier, there are legitimate reasons for the
separation of differential and integral information used in
the evaluation process of nuclear data. However, it is also
obvious that this “strict” separation is often breached for
the sake of optimizing the performance of data libraries in
the simulation of integral benchmarks. Specific and sup-
posedly well-known integral benchmarks are often used
to find a set of correlated quantities, e.g., (ν, PFNS, σf )
of 239Pu, which leads to the correct prediction of keff of
Jezebel. Using this integral information but not incorpo-
rating it into the associated covariance matrices is incon-
sistent at best. However, and because the “adjustment”
procedure is done very sporadically and within the esti-
mated uncertainties of those nuclear data, this inconsis-
tency is of limited importance. As mentioned earlier, it
also means that the evaluated uncertainties propagated
through transport simulations lead to uncertainties on in-
tegral quantities much larger than the reported experi-
mental uncertainties.

However, and as argued in this paper, this somewhat
artificial separation between differential and integral in-
formation should be eliminated and that all information
available should be used in a comprehensive nuclear data
evaluation approach. For that to happen however, and
to avoid the classic trap of past “adjusted” libraries that
would perform extremely well for benchmarks for which
they were adjusted and rather poorly when extrapolated
away from their calibration point, one has to be very cau-
tious.

The use of physics-informed deep-learning algorithms
is revolutionizing many pans of scientific research from
genome exploration to the development of new materials
and the discovery of faint objects in the deep sky. The
field of nuclear physics is also rich in data, and AI tech-
niques could be used to guide our next evaluation efforts.
Logistics in terms of organization and formatting of all
nuclear data, differential, quasi-differential, semi-integral,
integral, have to be developed. The EXFOR experimental
database of differential data is an important tool, which
could be extended further to make a more efficient use
of metadata. The DICE database represents an impor-
tant step in the same direction for integral benchmarks
this time. Powerful machine learning algorithms are now
ubiquitous, open-source and free for anyone to use. Our
community is not quite prepared to use those modern
tools, given the fragmented and limited databases of nu-
clear data that can be used at this point, but the path is
rather clear.
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